Estamos aqui para impulsionar a transformação no mercado da saúde

Inteligência artificial pode auxiliar na predição da mortalidade em casos de câncer

Escrito por Thamires Pedro

fevereiro 23, 2023

Estudo na Faculdade de Saúde Pública da USP revela benefícios na utilização de inteligência artificial para auxiliar tomadas de decisões médicas

De acordo com o Instituto Nacional de Câncer (Inca), 705 mil casos da doença são esperados a cada ano até 2025 somente no Brasil. Dentro desse cenário preocupante, pesquisadores do Laboratório de Big Data e Análise Preditiva em Saúde (Labdaps) da Faculdade de Saúde Pública (FSP) da USP estudam o uso de inteligência artificial (IA) por machine learning na predição da mortalidade de pacientes com a doença. O algoritmo informa a equipe médica sobre o risco do paciente evoluir a óbito entre 12 a 24 meses após a data de diagnóstico, garantindo assim um panorama sobre a gravidade de seu estado e quais medidas preventivas específicas devem ser tomadas. A iniciativa é fruto de um financiamento garantido pela Secretaria Estadual de Saúde de São Paulo.

De acordo com o doutorando Gabriel Silva, da FSP e pesquisador principal do estudo, os dados obtidos pela IA ficariam disponíveis desde o início do tratamento. “Digamos que o paciente fez os seus exames e voltou no retorno com o médico. Ali o profissional já vai ter algumas informações, por exemplo, quanto ao estadiamento clínico”, explica Gabriel ao Jornal da USP. Estadiar um caso de câncer implica a avaliação de seu grau de disseminação dado chave para se identificar pacientes de alto risco.

O pesquisador afirma que a rápida indicação de um caso grave ajudaria no conhecimento antecipado de medidas que possam aumentar a sobrevida de diagnosticados com câncer. “Isso pode ser uma ferramenta muito útil para priorizar o tratamento de determinados pacientes, para identificar qualquer pessoa que tem o maior risco de morrer. O que eu faço com esse paciente hoje? Eu passo ele na frente da fila de tratamento ou esse paciente apresenta um baixíssimo risco de morte e eu consigo priorizar uma outra pessoa em uma situação mais grave?”, explica Gabriel.

 A pesquisa contou com o banco de dados do Registro Hospitalar de Câncer (RHC) da Fundação Oncocentro de São Paulo (Fosp), vinculada à Secretaria de Saúde, que tem como objetivo incentivar o estudo e o ensino de atividades de prevenção e detecção precoce do câncer. Apenas pacientes diagnosticados de 2014 a 2017 no Estado de São Paulo foram incluídos no estudo, que abrange todos os cânceres com maior incidência na população brasileira, como o de mama e o de próstata. O câncer de pele não melanoma, por apresentar altos índices de cura, não foi considerado para a pesquisa. Ao todo, 29 mil pacientes tiveram seus perfis analisados por inteligência artificial, sendo que 72,7% foram diagnosticados em hospitais públicos.

A aplicação prática do uso de IA ficaria a cargo da disponibilização das informações no prontuário digital, já utilizado pelo Sistema Único de Saúde (SUS) desde 2017. O prontuário já é uma tecnologia que possibilita a consulta do histórico clínico, resultados de exames e dados sobre os pacientes.

 

O professor Alexandre Chiavegatto Filho, diretor do Labdaps e docente da FSP, explicita os benefícios da implementação da inteligência artificial. “Os algoritmos garantirão um subsídio à equipe médica. Hoje em dia o médico possui muita informação dispersa, mas nada que unifique tudo para dar exatamente o que esse profissional gostaria de saber, que é a gravidade desse paciente.”

 

A utilização de IA na área da saúde é um campo ainda pouco explorado. A aplicação por machine learning, neste caso, auxilia na tomada de decisões médicas ao utilizar algoritmos para realizar previsões precisas acerca das condições de saúde do paciente em questão. O doutorando aponta os benefícios da inteligência artificial para o campo médico. “O machine learning funciona a partir do aprendizado das regras gerais dos dados. Ao apresentarmos um conjunto de informações, são explicitadas uma série de relações que a olho nu não seriam identificadas”, explica Gabriel.

Agora, os pesquisadores prosseguem para a fase dois do estudo, utilizando uma inteligência artificial 2.0 e adotando um estudo clínico randomizado (com pacientes distribuídos aleatoriamente entre os grupos para evitar vieses). “Nós já descobrimos que esses algoritmos tomam decisões inteligentes na área da saúde. O segundo passo é se perguntar se o profissional de saúde que tem essa informação toma melhores decisões”, afirma o diretor do Labdaps. Além disso, uma possível melhora no prognóstico dos pacientes também será analisada na próxima fase.

O artigo descrevendo o estudo

Via: Jornal Da USP

Acesse o site da epharma

Artigos em comum

Conhecendo a protagonista em inovação na saúde Carolina Soihet Cohen

Conhecendo a protagonista em inovação na saúde Carolina Soihet Cohen

Carolina Soihet Cohen é uma renomada especialista em Comunicação de Causas e uma das líderes do movimento global pela saúde e igualdade de acesso a tratamentos médicos. Como cofundadora da Colabore com o Futuro, ela está à frente na defesa dos direitos à saúde e na...

Conheça o Protagonista da Saúde: Alex Sanghikian

Conheça o Protagonista da Saúde: Alex Sanghikian

Na busca por entender o futuro da saúde, é crucial conhecer os visionários que estão moldando esse cenário. Entre esses líderes está Alex Sanghikian, atual gerente da área de Digital & Inovação da Sandoz no Brasil. Com mais de 15 anos de experiência na vanguarda...

Acompanhe +O2labs

+o2Labs Respire boas ideias

Sobre +O2labs

Uma plataforma própria com uma metodologia vencedora voltada exclusivamente para inovação na prática com 3 programas distintos:

  • Central de Ideias: campanhas de intraempreendedorismo para fomentar a cultura de inovação com os epharmers, nossos colaboradores.
  • epharma Disrupt: desenvolver os melhores MPVs através de squads multifuncionais e alianças estratégicas para cocriação entre experts.
  • epharma Connect: foco em inovação aberta com staturps que queiram fazer parte de nossos desafios de forma colaborativa, e conectar com outros labs para criar parcerias diversificadas e escalar MVPs.

Junte-se a nós neste mesmo objetivo! Respire boas ideias.